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Infra-red Spectroscopy

[ Introduction ]

Infra-red region: 3 x 10'>-3 x 10" Hz; 100 pum-1 pm wavelength. Vibrational spectroscopy.
One of the most valuable spectroscopic regions for the chemist. Separations between levels
are some 10* joules/mole (Chapter 3).
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The infra-red region. Here it is a vibration, rather than a rotation, which must give rise to a
dipole change. Consider the carbon dioxide molecule as an example, in which the three atoms
are arranged lincarly with a small net positive charge on the carbon and small negative

charges on the oxygens:
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During the mode of vibration known as the ‘symmetric stretch’, the molecule is alternately
stretched and compressed, both C— O bonds changing simultaneously, as in Fig. 1.6. Plainly
the dipole moment remains zero throughout the whole of this motion, and this particular
vibration is thus ‘infra-red inactive’.
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[ Condmon:]

Dipole Changes during Vibrations and Rotations

In order to absorb infrared radiation, a molecule must undergo a net change in dipole moment as a
consequence of its vibrational or rotational motion. Only under these conditions, the alternating elec-
trical field of the radiation interact with the molecule and cause the changes in the amplitude of one of
its motions. The charge distribution around a molecule such as HCI is not symmetric. Thus, HCI has
a significant dipole moment and it is said to be polar (H*3, CI-¥). As the HCI molecule vibrates longi-
tudinally, a regular fluctuation in its dipole moment occurs. Thus, a field is developed that can interact
with the electrical field associated with the radiation. No net change in dipole moment occurs during
the vibration or rotation of homonuclear species such as H,, O,, N, or Cl, and therefore such mol-
ecules cannot absorb in the infrared.

[‘l'ypu of Molecular Vlbrlﬁonl]

Vibrations may basically be characterised into the following two categories.

(i) Stretching and (ii) bending.

A stretching vibration involves a continuous change in the interatomic distance along the axis of
the bond between two atoms, but the atoms remain in the same bond axis.

OO

Stretching vibrations are of two types:
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(i) Symmetrical stretching
In this stretching both the atoms move in and out simultaneously. For example, symmetrical stretching

of > CH, group is shown in Fig. 4.I2.® ®
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Fig. 4.12. Symmetrical stretching.

(l) Asymmetrical stretching
In this stretching, one atom moves ‘in’ while the other moves ‘out’. It is represented for >CH, group

n Fig. 4.13. @ @
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Fig. 4.13. Asymmetrical stretching.

Bending vibrations are characterised by a change in the angle between the two bonds and are of
four types as shown in Fig. 4.14.

(i) scissoring (ii) rocking (iii) wagging and (iv) twisting
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(+) indicates motion from plane toward reader
(=) indicates motion from plane away from reader
Fig. 4.14

Model of Stretching Vibrations

Simple harmonic motion: When two masses are connected by a spring, a disturbance of one of these
masses along the axis of the spring results in a vibration called a simple harmonic motion.
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[ 3.1.2 The Simple Harmonic Oscillator ]

In Fig. 3.1 we have plotted the energy in the form of Eq. (3.2), i.c. as a parabola. The zero of
curve and equation is at r = rog, and any energy in excess of this, for example at &;, arises
because of extension or compression of the bond. The figure shows that if one atom (Cl) is
considered to be stationary on the r = 0 axis, the other (H) will oscillate between H' and H”. In
the case of HCI, it is a good approximation to say that, during vibrations, the heavy chlorine
atom stays virtually still and it is the much lighter hydrogen which moves. However, only the
distance between the two atoms is important and for any diatomic molecule we can always
imagine ourselves to be sitting on one atom and watching the other move-—from our point of
view the atom we are on is stationary and can be assumed fixed on the r = 0 axis. Thus diagrams
like Fig. 3.1 apply to any diatomic molecule.

If the energy of the HCl molecule of Fig. 3.1 is increased to £, the oscillation will become
more vigorous—that is to say the degree of compression and extension will be greater—but the
vibrational frequency will not change. An clastic bond, like a spring, has a certain intrinsic
vibrational frequency, dependent on the mass of the system and the force constant, but is
independent of the amount of distortion. Classically it is simple to show that the oscillation

frequency is:
1k
Wore. =3~ \/; Hz (3.3)

where u is the reduced mass of the system (cf. Eq. (2.9)). To convert this frequency to wave-
numbers, the unit most usually employed in vibrational spectroscopy, we must divide by the
velocity of light, ¢, expressed in ecms™' (cf. Sec. 1.1), obtaining:

) I
u“—m '-‘- cm (3.4)

Vibrational energies, like all other molecular energies, are quantized, and the allowed
vibrational energies for any particular system may be calculated from the Schrodinger equa-
tion. For the simple harmonic oscillator these turn out to be:

E, = (v+{hvee joules (v=0,1,2 ...) (3.5)

where v is called the vibrational quantum number. Converting to the spectroscopic units, cm ',
we have:

o = B (v +§)@oe cm™! (3.6)
he
as the only energies allowed to a simple harmonic vibrator. Some of these are shown in Fig. 3.2

In particular, we should notice that the lowest vibrational energy, obtained by puttingv = 0
in Eq. (3.5) or (3.6), is

Eo = bhwoe joules (wosc in Hz)

or €0 =40 M (Tou incm™') (3.7)
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The implication is that the diatomic molecule (and, indeed, any molecule) can never have zero
vibrational energy; the atoms can never be completely at rest relative to each other. The quantity
4 hwoe. joules or $@osc cm ™! is known as the zero-point energy; it depends only on the classical
vibration frequency and hence (Eq. (3.3) or (3.4)) on the strength of the chemical bond and the
atomic masses.

The prediction of zero-point energy is the basic difference between the wave mechanical and
classical approaches to molecular vibrations. Classical mechanics could find no objection to a
molecule possessing no vibrational energy but wave mechanics insists that it must always vibrate
to some extent; the latter conclusion has been amply borne out by experiment.

Further use of the Schrédinger equation leads to the simple selection rule for the harmonic
oscillator undergoing vibrational changes:

Av = +1 (3.8)
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Figure 3.2 The vibrational energy levels and allowed transitions between them for a dintomic molecule undergoing
umple harmomc motion.
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Applying the selection rule we have immediately:

Epstlw = (0+ 1+ i}-;'mc - (v+ i};’ouc

, (3.9a)
= J:Jm: cm”

for emis<ion and

Eo—pil = Joge. €M~} (3.96)

for absc. ption, whatever the initial value of v.

Such a simple result is also obvious from Fig. 3.2—since the vibrational levels are equally
spaced, transitions between any two neighbourning states will give nise to the same energy
change. Further, since the difference between energy levels expressed in em~' gives directly
the wavenumber of the spectral line absorbed or emitted

Fapectromopic = € = o, €M™ (3.10)

This, again, is obvious if one considers the mechanism of absorption or emission in classical
terms. In absorption, for instance, the vil':gmting molecule will absorb energy only from radiation
with which it can coherently interact (cf. Fig. 1.8) and this must be radiation of its own
oscillation frequency.

3.1.3 The Anharmonic Oscillator ]

Real molecules do not obey exactly the laws of simple harmonic motion; real bonds, although
elastic, are not so homogeneous as to obey Hooke's law. If the bond between atoms is stretched,
for instance, there comes a point at which it will break—the molecule dissociates into atoms,
Thus although for small compressions and extensions the bond may be taken as perfectly elastic,
for larger amplitudes—say greater than 10 per cent of the bond length—a much more compli-
cated behaviour must be assumed. Figure 3.3 shows, diagrammatically, the shdpe of the energy
curve for a typical diatomic molecule, together with (dashed) the ideal, simple harmonic
parabola.

A purely empirical expression which fits this curve to a good approximation was derived by
o M..Moue. and is called the Morse function:

E = D [1 - exp{a(req — 1)} (3.11)
- where a is a constant for a particular molecule and D, is the dissociation energy.
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Fig. 4.16. Potential energy curves for (1) Harmonic oscillator and (2) Anharmonic oscillator.
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When Eq. (3.11) is used instead of Eq. (3.2) in the Schrddinger equation, the pattern of the
allowed vibrational energy levels is found to be:

o= U+Pde -+ Dexe em™! (v=01,2...) (3.12)

where &, is an oscillation frequency (expressed in wavenumbers) which we shall define more
closely below, and x, is the corresponding anharmonicity constant which, for bond stretching
vibrations, is always small and positive (= +0.01), so that the vibrational levels crowd more
closely together with increasing v. Some of these levels are sketched in Fig. 3.4.

It should be mentioned that Eq. (3.12), like (3.11), is an approximation only, more precise
expressions for the energy levels require cubic, quartic, etc., terms in (v + i) with anharmonicity
constants y,, =, etc., rapidly diminishing in magnitude. These térms are important only at large
values of v, and we shall ignore them.

If we rewrite Eq (3.12), for the anharmonic oscillator, as:

fo =@l = x(v+H}Hv+1) (3.13)
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Figure 3.4 Th rational energy kevels and some transitions between them for a diatomic molecule undergoing
znharmonic o+ wons,
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and compare with the energy levels of the harmonic oscillator (Eq. (3.6)), we see that we can
write:

Dose. = (1 = xo(v + 1)) (3.14)

Thus the anharmonic oscillator behaves like the harmonic oscillator but with an oscillation
frequency which decreases steadily with increasing v. If we now consider the hypothetical energy
state obtained by putting v = ~ } (at which, according to Eq. (3.13), £ = 0) the molecule would
be at the equilibrium point with zero vibrational energy. Its oscillation frequency (in cm™')
would be:

Wose, = We

Thus we see that &, may be défined as the (hypothetical) equilibrium oscillation frequency of the
anharmonic system—the frequency for infinitely small vibrations about the equilibrium point.
For any real state specified by a positive integral v the oscillation frequency will be given by Eq.
(3.14). Thus in the ground state (v = 0) we would have:

wo = @e(l "’;'xt} em™!



