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What is a directed graph? 
 

  A directed graph (or a digraph) G consist of a 

set of vertices V={v1, v2, …….}, a set of edges    

E={e1, e2, …….},and a mapping ψ that maps every 

edge onto some ordered pair of vertices (vi ,vj ).  

  As in the case of undirected graphs, a vertex is 

represented by a point and an edge by a line 

segment between vi to vj. For example, the 

following shows the digraph which is an oriented 

graph. 

 



Directed graph with five vertices 
 



  In a digraph an edge is not only incident on a vertex, but is also 

incident out of a vertex and incident into a vertex.  

  The vertex vi, which edge is incident out of, is called the initial 

vertex of  ek. The vertex vj, which ek is incident into, is called the terminal 

vertex of ek . 

  In the above example v5 is the initial vertex and v4 is the terminal 

vertex of e7 . An edge for which the initial and terminal vertices are the 

same forms a self-loop, such as e5.  

  The number of edges incident out of a vertex vi, is called the out-

degree (or out-valence or outward demidegree) of vi, and is written as       

d+ ( vi). The number of edges incident into vi is called the in-degree (or a 

in-valence or inward demidegree) of vi  and is written as d- ( vi). 

 



d+( v1)=3, d- ( v1)=1, 

d+( v2)=1, d- ( v2)=2, 

d+( v5)=4, d- ( v5)=0, 

d+( v4)=1, d- ( v4)=3 

d+( v3)=1, d- ( v3)=4 

 



  In any Digraph G the all in-degrees is equal to the sum of all 

out-degrees. 

 

   

  An isolated vertex is a vertex in which the  in-degree and the 

out-degree are both equal to zero.  A vertex v in a digraph is called a 

pendent if it is of degree one, that is if 

   d+ ( v)+ d- ( v)=1 

  Two directed edges are said to be parallel if they are mapped 

onto the same ordered pair of vertices. That is, in addition to being 

parallel in the sense of undirected edges, parallel directed must also 

agree in the direction of their arrows. 

   In the above example, edges e8, e9 and e10 are parallel whereas 

edges e2 and e3 are not. 

 



ISOMORPHIC DIGRAPHS: 

   Isomorphic digraphs were defined such that they have 

identical behavior in terms of graph properties. In other words, 

if their labels are removed, two isomorphic graphs are 

indistinguishable. 

   For two digraphs to be isomorphic not only must their 

corresponding undirected graphs be isomorphic, but the 

directions of the corresponding edges must also agree.  



 



TYPES OF DIGRAPHS: 

 

SIMPLE DIGRAPHS:  

                             A digraph that has no self-loop or parallel edges is called a simple digraph. 

ASYMMETRIC DIGRAPHS: 

                                    Digraphs that have at most one directed edge between a pair of vertices, 

but are allowed to have self-loops are called asymmetric or anti-symmetric. 

SYMMETRIC DIGRAPHS: 

                                     Digraphs in which for every edge (a, b) there is also an edge (b, a).  A 

digraph that is both simple and symmetric is called a simple symmetric digraph. Similarly, 

a digraph that is both simple and asymmetric is simple asymmetric. The reason for the 

terms symmetric will be apparent in the context of binary relations. 

 

 



COMPLETE DIGRAPH: 

                                      A complete undirected graph was defined as a simple graph in 

which every vertex is joined to every other vertex exactly by one edge. For digraphs 

we have two types of complete graphs 

  A complete symmetric digraph is a simple digraph in which there is exactly 

one edge directed from every other vertex, and a complete asymmetric digraph is an 

asymmetric digraph in which there is exactly one edge between every pair of 

vertices. 

  A complete asymmetric digraph of n vertices contains n(n-1)/2 edges, but a 

complete symmetric digraph of n vertices contains n(n-1) edges. A complete 

asymmetric digraph is also called as a tournament or a complete tournament. 

  A digraph is said to be balanced if for every vertex Vi the in-degree equals 

the out-degree; that is d+ ( v)+ d- ( v)=1. (A balanced digraph is also referred to as a 

pseudo-symmetric digraph or an isograph). A balanced digraph is said to be regular 

if every vertex has the same in-degree and out-degree as every other vertex. 

 





TREES WITH DIRECTED EDGES: 
   A tree is a connected digraph that has no circuit, neither a directed circuit nor 

a semi circuit. A tree of n vertices contains n-1 directed edges and has properties 

similar to those with undirected edges. 

  Trees with directed edges are of great importance in many applications such 

as electrical network analysis, game theory, theory of languages, computer 

programming, and counting problems, to name a few. 

ARBORESENCE: 

 A digraph G is said to be an arborescence if  

i) G contains no circuit neither directed nor semi circuit. 

ii)     In G there is precisely one vertex v of zero in-degree. 

This vertex v is called the root of arborescence. It is shown in the following: 

 



THEOREM: 
  An arborescence is a tree in which every vertex other than the 
root has an in-degree of exactly one.  
 
 



Euler digraph 

• In a digraph G a closed directed walk (i.e., a directed walk that 
starts and ends at the same vertex) which traverses every 
edge of G exactly once is called a directed Euler line.  

• A digraph containing a directed Euler line is called an Euler 
digraph. The graph in Fig.  is an Euler digraph, in which the 
walk  a b c d e f is an Euler line.  

 





ADJACENCY MATRIX 

  The most popular form in which a graph or digraph is fed to a computer is its 

adjacency matrix. Assign a distinct number to each of the n vertices of the given 

graph G, the n by n binary matrix X(G) is used for representing G during input, 

storage, and output. Since each of the n2 entries is either a 0 or a 1, the adjacency 

matrix requires n2 bits of computer memory. 

   Bits can be packed into words. Let w be the word length and n be the number 

of vertices in the graph. Then each row of the adjacency matrix may be written as a 

sequence of n bits in  [n/w ]machine words. ( [x] denotes the smallest integer not less 

than x). The number of words required to store the adjacency matrix is, therefore n 

[n/w] 

. 

 



• The adjacency matrix of an undirected graph is 

symmetric, and therefore storing only the upper 

triangle is sufficient. This requires only n(n-1)/2 bits 

of storage. This saving in storage, however, often 

costs in increased complexity and computation time 



INCIDENCE MATRI X     

  An incidence matrix is also used for storing and manipulation of a 

graph. An incidence matrix requires  n.e  bits of storage, which might be 

more than the n2 bits needed for an adjacency matrix, because the number of 

edges e is usually greater than the number of vertices n.  

  On rare occasions it may be advantageous to use the incidence matrix 

rather than the adjacency matrix, in spite of the increased requirements in 

storage. Incidence matrices are particularly favored for electrical networks 

and switching networks. 

   

 



EDGE LISTING: 

   Another representation often used is to list all edges of the 

graph as vertex pairs, having numbered the n vertices in some arbitrary 

order. For example, the digraph in the following would appear as a set 

of the following ordered pair: 

1,2),(2,1),(2,4),(3,2),(3,3),(3,4),(4,1),(4,1),(5,2). Had this graph been 

undirected, we would simply ignore the ordering in each vertex pair. 

  Clearly, parallel edges and self loops can be included in this 

representation of a graph or digraph. 

 The number of bits required to label( 1 through n) vertex is b, where  

   



EDGE LISTING 

Edge listing is a very convenient form for inputting a graph into the computer, but 

the storage, retrieval, and manipulation of the graph within the computer become 

quite difficult. 



TWO LINEAR ARRAYS: 

  A slight variation of edge listing is to represent the graph by two linear 

arrays, say F=(f1,f2,…….,fe) and H=(h1,h2,……..,he). Each entry in these arrays 

is a vertex label. The ith edge ei is from vertex fi to vertex hi if G is a 

digraph.(If  G is undirected, just consider ei as between fi, and hi.) For example, 

the digraph in the following would represented by the two arrays 

  F = (5,2,1,3,2,4,4,3,3) 

  H = (2,1,2,2,4,1,1,4,3). 

 The storage requirements are the  

same as in Edge Listing. 

 



SUCCESSOR LISTING: 

  Another efficient method used frequently for graphs in which the 

ratio e/n is not large is by means of linear arrays. After assigning the 

vertices, in any order, the numbers 1,2,……..,n, we represent each vertex k 

by a linear array, whose first element is k and whose remaining elements 

are the vertices that are immediate successors of k, that is, the vertices 

which have a directed path of length one from k.(In an undirected graph 

these are simply vertices adjacent to k.) The five-vertex is given in the 

above the representations are as follows: 

1 : 2 

2 : 1,4 

3 : 2,3, 4 

4 : 1,1 

5 : 2 

 



  For an undirected graph the neighbors (rather than the successors) of every 

vertex are listed. Therefore, each edge appears twice an obvious redundancy. 

  To compare its storage efficiency with that of the adjacency matrix, let dav 

be the average degree of the vertices in the graph. Assuming that one computer 

word is needed for the label of each vertex, the total storage requirement for an n 

vertex graph is n( 1 + dav)  words. Thus the successor listing is more efficient 

than the adjacency matrix if  
 

                              dav                                                              Where  w being the word length.  
 

 

The successor or neighbor listing form is extremely convenient for path-  
finding algorithms. 





ALGORITHM FOR 

CONNECTEDNESS AND COMPNENT 

• SPANNING TREE 

• SHORTEST PATH 



• KRUSKAL ALGORITHM  

• PRIMS ALGORITHM 

      i) Shortest path from a specified vertex to Another specified vertex: 

• DIJKSTRA’S ALGORITHM 

    ii) Shortest path between every vertex pair: 

• WARSHALL FLOYDS ALGORITHM 



Kruskal Algorithm:( for finding shortest spanning  

tree) 

1. List all edges of the graph G in order of increasing weight. 

2.  Select a smallest edge of G. 

3.  Select another smallest edge that makes no circuit with the 

previously selected edges. 

4.  Continue step (3) until (n-1) edges have been selected . 

These edges will constitute the desired shortest spanning tree. 

E.g. 

 7,7,8,9,9,10,10,11,12,16,17,20. 



 



Prim’s Algorithm: 

1) Draw n isolated vertices and label them v1, v2, …vn. 

2)  Tabulate gm weights of the edges of G in an n by n 

table.  (Note that the entries in the table are symmetric 

with respect to the diagonal and the diagonal is empty). 

3)  Set the weights of non existent edges as large. 

4)  Start from vertex v1 and connect to its nearest neighbour 

(i.e. to the vertex which has the smallest entry in row1 of 

the table), says vk. 

5)   Now consider v1 and vk as one sub graph and connect 

this sub graph to its close to neighbour(i.e. to a vertex 

other than v1 and vk that has the smallest entry among all 

entries in rows 1 and k). Let this new vertex be vi. 

 



6) Next regard the tree with vertices v1, vk vi as one sub 

graph, and continue the process until all n vertices have 

been connected by n-1 edges. 



i) A simple weighted digraph G of n vertices is described by n x n 

matrix D = [ dij], where 

   dij = length (or distance or weight) of the directed edge  

      from vertex i to vertex j,  

       dij ≥ 0. 

       dij = 0 

       dij = ∞, if there is no edge from i to j. 

ii) In general dij ≠ dji and triangle inequality need not be satisfied.  

                                      

                                                                     

  

                                                                  dij ≤ dik+ dkj 

 

 

 



iii) The distance of a directed path P is defined to be the sum of 

the length of the edges in P.  

  Problem is the find the shortest possible path and its 

length of a starting vertex s to terminal vertex t. 

 



 

Note: 

i) Suppose in a graph we have self loops and parallel edges 

(it simple graph), it can be made simple by discarding all 

self loops and replacing every set of parallel edges by the 

shortest edge among them. 

ii)  If graph is not directed, then dij  =  dji and each 

undirected edge is replaced by two appositely directed 

edge of same weight. 

iii)  If the graph is not weighted, dij = 1. 

 

 



diagram 

     



Dijkstra’s Algorithm: 
i) This algorithm labels the vertices of the given digraph.  At each 

stage in the algorithm some vertices have permanent labels and 

others temporary labels .  The algorithms begin by assigning a 

permanent label by assigning a permanent label o to the starting 

vertex s and a temporary label ∞ to the remaining n-1 vertices. 

ii)  From then on, in each iteration another vertex gets a permanent 

label, according to the following rules. 

         a)   Every vertex j that is not very permanently labeled gets a 

new temporary label whose value is given by  

                           min [old label of j, (old label of i + dij)] 

              where i is the latest vertex permanently labeled, in the 

previously iteration and dij is the direct distance between vertices I 

and j.  If it‟s i and j are not joined by an edge, then dij = ∞. 

 



  b)     The smallest value among all the temporary labels is found, 

and this becomes the permanent label of the corresponding vertex.  In 

the case of tie, select any one of the candidates for permanent 

labeling. 

   Steps 1 and 2 are repeated alternately until the destination vertex „t‟ 

gets a permanent label. 

  Note:   The 1st vertex to be permanently labeled is at a distance 

of O from s. 

       The 2nd vertex to get a permanent label (out of the remaining n-1 

vertices) is the vertex closest to s.  From the remaining n-2 vertices, 

the next one to be permanently labeled is the 2nd closest vertex to s.  

And so on. 

 



Diagram 







 

 

  The algorithm described does not actually list the shortest path 

from the starting vertex to the terminal vertex; it only gives the 

shortest distance. 

     The shortest path can be easily constructed by working backward 

from the terminal label differ exactly by the length of the connecting  

edge(A tie indicates more than one shortest path).    

      i ← min (j, i+dij). 

 



Algorithm: 

1)     for h = 1 to n do                    “shortest” 

                being                                   s  -----   t 

                   label(1) ← ∞ 

                    vect (1) ← 0 

  End                                               j ← min (j, i dij) 

2)  Label (s) ← o                                               ↑ 

      vect (s) ← 1                                    label (j) 

       i ← s. 



3)  M ← ∞ 

     in 

      for j=1 to n do  

             begin  

                      if (vect(j) ≠ 1) 
                                                 z ← label (i) + dij  

                                                 if z < label (j) then  

                                                          label(j) ← z  

                                                if (label (j) ≤ M 

                                                                   in  
                                                                         M ← label(j)  
                                                                            in  
                                                                          p ← j 
      end 



  
                   

4) Vect (p) ← 1 

      if (p≠ t)         i ←p  

                            go to step (3) 

5) Label t ← label (t) 

6) Print label t 

7) stop. 

                           





• Starting with the  n by n (n x n) matrix  D=[dij] of direct  

distances, n different matrices D1,D2,….,Dn  they are constructed 

sequentially. 

•  Matrix Dk,  1  <   k   <    n  may  be through of as matrix   whose  

(i,j)  entries  gives  the length of shortest  directed path among all 

directed path  from  i  to  j, with vertices 1,2,…..,k. allowed as the 

intermediate vertices. 

 



 Matrix Dk  =  [ dij 
(k)]     is      constructed from Dk-1 occurring 

to the following rule. 

   dij 
(k)    =   min  [ dij 

(k-1) , ([ dik 
(k-1)  +  dkj 

(k-1)]) ] 

          where k=1,2,……..n 

  dij
 (0) = dij 

  That is iteration1, vertex1 is inserted in the path from 

vertex  i  to  j    if   dij   >  di1+d1j     , In   iteration 2, 

vertex 2  is   inserted.   

 



  Suppose    for example let as shortest directed  path from 7 to 3 

is  7 4 1 9 5 3 

The following replacement occurs 

Interation1:       d49
 (0) is replaced by ( d41

 (0)  + d19
 (0) ) 

Interation4:       d79
 (0) is replaced by ( d74

 (3)  + d49
 (3) ) 

Interation5:       d49
 (0) is replaced by ( d95

 (4)  + d53
 (4) ) 

Interation9:       d49
 (0) is replaced by ( d79

 (8)  + d93
 (8) ) 

             Once the shortest distance is obtained in d73
 (9) the value of 

this entry will not altered in subsequence operation. 

 



  

Shortest path between every vertex pair: 

          for k ← 1 to n do  

          for i ← 1 to n do  

           if dik < > ∞  

                       then  

                                  for  j ← 1 to n do  

                                  if dkj <> ∞ 

                                              then  

                                                       min  

                                                            $≤ dik + dkj  

                                                                 min 

                                                              if $ < dij then  

                                                                  min  

                  dij ← $                                                  

    
                                                                                       



                                    

     (or)   

for k ← 1 to n do  

                           for i ← 1 to n do  

                           for j ← 1 to n do  

                                       dij ← min {dij, dik + dkj} k = 1 

      


