

• Directed graphs
 In-degree

 Out – degree

 Isolated , pendant digraphs

 Isomorphic

• Types of di-graphs

• Tree with directed edges

What is a directed graph?

 A directed graph (or a digraph) G consist of a

set of vertices V={v1, v2, …….}, a set of edges

E={e1, e2, …….},and a mapping ψ that maps every

edge onto some ordered pair of vertices (vi ,vj).

 As in the case of undirected graphs, a vertex is

represented by a point and an edge by a line

segment between vi to vj. For example, the

following shows the digraph which is an oriented

graph.

Directed graph with five vertices

 In a digraph an edge is not only incident on a vertex, but is also

incident out of a vertex and incident into a vertex.

 The vertex vi, which edge is incident out of, is called the initial

vertex of ek. The vertex vj, which ek is incident into, is called the terminal

vertex of ek .

 In the above example v5 is the initial vertex and v4 is the terminal

vertex of e7 . An edge for which the initial and terminal vertices are the

same forms a self-loop, such as e5.

 The number of edges incident out of a vertex vi, is called the out-

degree (or out-valence or outward demidegree) of vi, and is written as

d+ (vi). The number of edges incident into vi is called the in-degree (or a

in-valence or inward demidegree) of vi and is written as d- (vi).

d+(v1)=3, d- (v1)=1,

d+(v2)=1, d- (v2)=2,

d+(v5)=4, d- (v5)=0,

d+(v4)=1, d- (v4)=3

d+(v3)=1, d- (v3)=4

 In any Digraph G the all in-degrees is equal to the sum of all

out-degrees.

 An isolated vertex is a vertex in which the in-degree and the

out-degree are both equal to zero. A vertex v in a digraph is called a

pendent if it is of degree one, that is if

 d+ (v)+ d- (v)=1

 Two directed edges are said to be parallel if they are mapped

onto the same ordered pair of vertices. That is, in addition to being

parallel in the sense of undirected edges, parallel directed must also

agree in the direction of their arrows.

 In the above example, edges e8, e9 and e10 are parallel whereas

edges e2 and e3 are not.

ISOMORPHIC DIGRAPHS:

 Isomorphic digraphs were defined such that they have

identical behavior in terms of graph properties. In other words,

if their labels are removed, two isomorphic graphs are

indistinguishable.

 For two digraphs to be isomorphic not only must their

corresponding undirected graphs be isomorphic, but the

directions of the corresponding edges must also agree.

TYPES OF DIGRAPHS:

SIMPLE DIGRAPHS:

 A digraph that has no self-loop or parallel edges is called a simple digraph.

ASYMMETRIC DIGRAPHS:

 Digraphs that have at most one directed edge between a pair of vertices,

but are allowed to have self-loops are called asymmetric or anti-symmetric.

SYMMETRIC DIGRAPHS:

 Digraphs in which for every edge (a, b) there is also an edge (b, a). A

digraph that is both simple and symmetric is called a simple symmetric digraph. Similarly,

a digraph that is both simple and asymmetric is simple asymmetric. The reason for the

terms symmetric will be apparent in the context of binary relations.

COMPLETE DIGRAPH:

 A complete undirected graph was defined as a simple graph in

which every vertex is joined to every other vertex exactly by one edge. For digraphs

we have two types of complete graphs

 A complete symmetric digraph is a simple digraph in which there is exactly

one edge directed from every other vertex, and a complete asymmetric digraph is an

asymmetric digraph in which there is exactly one edge between every pair of

vertices.

 A complete asymmetric digraph of n vertices contains n(n-1)/2 edges, but a

complete symmetric digraph of n vertices contains n(n-1) edges. A complete

asymmetric digraph is also called as a tournament or a complete tournament.

 A digraph is said to be balanced if for every vertex Vi the in-degree equals

the out-degree; that is d+ (v)+ d- (v)=1. (A balanced digraph is also referred to as a

pseudo-symmetric digraph or an isograph). A balanced digraph is said to be regular

if every vertex has the same in-degree and out-degree as every other vertex.

TREES WITH DIRECTED EDGES:
 A tree is a connected digraph that has no circuit, neither a directed circuit nor

a semi circuit. A tree of n vertices contains n-1 directed edges and has properties

similar to those with undirected edges.

 Trees with directed edges are of great importance in many applications such

as electrical network analysis, game theory, theory of languages, computer

programming, and counting problems, to name a few.

ARBORESENCE:

 A digraph G is said to be an arborescence if

i) G contains no circuit neither directed nor semi circuit.

ii) In G there is precisely one vertex v of zero in-degree.

This vertex v is called the root of arborescence. It is shown in the following:

THEOREM:
 An arborescence is a tree in which every vertex other than the
root has an in-degree of exactly one.

Euler digraph

• In a digraph G a closed directed walk (i.e., a directed walk that
starts and ends at the same vertex) which traverses every
edge of G exactly once is called a directed Euler line.

• A digraph containing a directed Euler line is called an Euler
digraph. The graph in Fig. is an Euler digraph, in which the
walk a b c d e f is an Euler line.

ADJACENCY MATRIX

 The most popular form in which a graph or digraph is fed to a computer is its

adjacency matrix. Assign a distinct number to each of the n vertices of the given

graph G, the n by n binary matrix X(G) is used for representing G during input,

storage, and output. Since each of the n2 entries is either a 0 or a 1, the adjacency

matrix requires n2 bits of computer memory.

 Bits can be packed into words. Let w be the word length and n be the number

of vertices in the graph. Then each row of the adjacency matrix may be written as a

sequence of n bits in [n/w]machine words. ([x] denotes the smallest integer not less

than x). The number of words required to store the adjacency matrix is, therefore n

[n/w]

.

• The adjacency matrix of an undirected graph is

symmetric, and therefore storing only the upper

triangle is sufficient. This requires only n(n-1)/2 bits

of storage. This saving in storage, however, often

costs in increased complexity and computation time

INCIDENCE MATRI X

 An incidence matrix is also used for storing and manipulation of a

graph. An incidence matrix requires n.e bits of storage, which might be

more than the n2 bits needed for an adjacency matrix, because the number of

edges e is usually greater than the number of vertices n.

 On rare occasions it may be advantageous to use the incidence matrix

rather than the adjacency matrix, in spite of the increased requirements in

storage. Incidence matrices are particularly favored for electrical networks

and switching networks.

EDGE LISTING:

 Another representation often used is to list all edges of the

graph as vertex pairs, having numbered the n vertices in some arbitrary

order. For example, the digraph in the following would appear as a set

of the following ordered pair:

1,2),(2,1),(2,4),(3,2),(3,3),(3,4),(4,1),(4,1),(5,2). Had this graph been

undirected, we would simply ignore the ordering in each vertex pair.

 Clearly, parallel edges and self loops can be included in this

representation of a graph or digraph.

 The number of bits required to label(1 through n) vertex is b, where

EDGE LISTING

Edge listing is a very convenient form for inputting a graph into the computer, but

the storage, retrieval, and manipulation of the graph within the computer become

quite difficult.

TWO LINEAR ARRAYS:

 A slight variation of edge listing is to represent the graph by two linear

arrays, say F=(f1,f2,…….,fe) and H=(h1,h2,……..,he). Each entry in these arrays

is a vertex label. The ith edge ei is from vertex fi to vertex hi if G is a

digraph.(If G is undirected, just consider ei as between fi, and hi.) For example,

the digraph in the following would represented by the two arrays

 F = (5,2,1,3,2,4,4,3,3)

 H = (2,1,2,2,4,1,1,4,3).

 The storage requirements are the

same as in Edge Listing.

SUCCESSOR LISTING:

 Another efficient method used frequently for graphs in which the

ratio e/n is not large is by means of linear arrays. After assigning the

vertices, in any order, the numbers 1,2,……..,n, we represent each vertex k

by a linear array, whose first element is k and whose remaining elements

are the vertices that are immediate successors of k, that is, the vertices

which have a directed path of length one from k.(In an undirected graph

these are simply vertices adjacent to k.) The five-vertex is given in the

above the representations are as follows:

1 : 2

2 : 1,4

3 : 2,3, 4

4 : 1,1

5 : 2

 For an undirected graph the neighbors (rather than the successors) of every

vertex are listed. Therefore, each edge appears twice an obvious redundancy.

 To compare its storage efficiency with that of the adjacency matrix, let dav

be the average degree of the vertices in the graph. Assuming that one computer

word is needed for the label of each vertex, the total storage requirement for an n

vertex graph is n(1 + dav) words. Thus the successor listing is more efficient

than the adjacency matrix if

 dav Where w being the word length.

The successor or neighbor listing form is extremely convenient for path-
finding algorithms.

ALGORITHM FOR

CONNECTEDNESS AND COMPNENT

• SPANNING TREE

• SHORTEST PATH

• KRUSKAL ALGORITHM

• PRIMS ALGORITHM

 i) Shortest path from a specified vertex to Another specified vertex:

• DIJKSTRA’S ALGORITHM

 ii) Shortest path between every vertex pair:

• WARSHALL FLOYDS ALGORITHM

Kruskal Algorithm:(for finding shortest spanning

tree)

1. List all edges of the graph G in order of increasing weight.

2. Select a smallest edge of G.

3. Select another smallest edge that makes no circuit with the

previously selected edges.

4. Continue step (3) until (n-1) edges have been selected .

These edges will constitute the desired shortest spanning tree.

E.g.

 7,7,8,9,9,10,10,11,12,16,17,20.

Prim’s Algorithm:

1) Draw n isolated vertices and label them v1, v2, …vn.

2) Tabulate gm weights of the edges of G in an n by n

table. (Note that the entries in the table are symmetric

with respect to the diagonal and the diagonal is empty).

3) Set the weights of non existent edges as large.

4) Start from vertex v1 and connect to its nearest neighbour

(i.e. to the vertex which has the smallest entry in row1 of

the table), says vk.

5) Now consider v1 and vk as one sub graph and connect

this sub graph to its close to neighbour(i.e. to a vertex

other than v1 and vk that has the smallest entry among all

entries in rows 1 and k). Let this new vertex be vi.

6) Next regard the tree with vertices v1, vk vi as one sub

graph, and continue the process until all n vertices have

been connected by n-1 edges.

i) A simple weighted digraph G of n vertices is described by n x n

matrix D = [dij], where

 dij = length (or distance or weight) of the directed edge

 from vertex i to vertex j,

 dij ≥ 0.

 dij = 0

 dij = ∞, if there is no edge from i to j.

ii) In general dij ≠ dji and triangle inequality need not be satisfied.

 dij ≤ dik+ dkj

iii) The distance of a directed path P is defined to be the sum of

the length of the edges in P.

 Problem is the find the shortest possible path and its

length of a starting vertex s to terminal vertex t.

Note:

i) Suppose in a graph we have self loops and parallel edges

(it simple graph), it can be made simple by discarding all

self loops and replacing every set of parallel edges by the

shortest edge among them.

ii) If graph is not directed, then dij = dji and each

undirected edge is replaced by two appositely directed

edge of same weight.

iii) If the graph is not weighted, dij = 1.

diagram

Dijkstra’s Algorithm:
i) This algorithm labels the vertices of the given digraph. At each

stage in the algorithm some vertices have permanent labels and

others temporary labels . The algorithms begin by assigning a

permanent label by assigning a permanent label o to the starting

vertex s and a temporary label ∞ to the remaining n-1 vertices.

ii) From then on, in each iteration another vertex gets a permanent

label, according to the following rules.

 a) Every vertex j that is not very permanently labeled gets a

new temporary label whose value is given by

 min [old label of j, (old label of i + dij)]

 where i is the latest vertex permanently labeled, in the

previously iteration and dij is the direct distance between vertices I

and j. If it‟s i and j are not joined by an edge, then dij = ∞.

 b) The smallest value among all the temporary labels is found,

and this becomes the permanent label of the corresponding vertex. In

the case of tie, select any one of the candidates for permanent

labeling.

 Steps 1 and 2 are repeated alternately until the destination vertex „t‟

gets a permanent label.

 Note: The 1st vertex to be permanently labeled is at a distance

of O from s.

 The 2nd vertex to get a permanent label (out of the remaining n-1

vertices) is the vertex closest to s. From the remaining n-2 vertices,

the next one to be permanently labeled is the 2nd closest vertex to s.

And so on.

Diagram

 The algorithm described does not actually list the shortest path

from the starting vertex to the terminal vertex; it only gives the

shortest distance.

 The shortest path can be easily constructed by working backward

from the terminal label differ exactly by the length of the connecting

edge(A tie indicates more than one shortest path).

 i ← min (j, i+dij).

Algorithm:

1) for h = 1 to n do “shortest”

 being s ----- t

 label(1) ← ∞

 vect (1) ← 0

 End j ← min (j, i dij)

2) Label (s) ← o ↑

 vect (s) ← 1 label (j)

 i ← s.

3) M ← ∞

 in

 for j=1 to n do

 begin

 if (vect(j) ≠ 1)
 z ← label (i) + dij

 if z < label (j) then

 label(j) ← z

 if (label (j) ≤ M

 in
 M ← label(j)
 in
 p ← j
 end

4) Vect (p) ← 1

 if (p≠ t) i ←p

 go to step (3)

5) Label t ← label (t)

6) Print label t

7) stop.

• Starting with the n by n (n x n) matrix D=[dij] of direct

distances, n different matrices D1,D2,….,Dn they are constructed

sequentially.

• Matrix Dk, 1 < k < n may be through of as matrix whose

(i,j) entries gives the length of shortest directed path among all

directed path from i to j, with vertices 1,2,…..,k. allowed as the

intermediate vertices.

 Matrix Dk = [dij
(k)] is constructed from Dk-1 occurring

to the following rule.

 dij
(k) = min [dij

(k-1) , ([dik
(k-1) + dkj

(k-1)])]

 where k=1,2,……..n

 dij
 (0) = dij

 That is iteration1, vertex1 is inserted in the path from

vertex i to j if dij > di1+d1j , In iteration 2,

vertex 2 is inserted.

 Suppose for example let as shortest directed path from 7 to 3

is 7 4 1 9 5 3

The following replacement occurs

Interation1: d49
 (0) is replaced by (d41

 (0) + d19
 (0))

Interation4: d79
 (0) is replaced by (d74

 (3) + d49
 (3))

Interation5: d49
 (0) is replaced by (d95

 (4) + d53
 (4))

Interation9: d49
 (0) is replaced by (d79

 (8) + d93
 (8))

 Once the shortest distance is obtained in d73
 (9) the value of

this entry will not altered in subsequence operation.

Shortest path between every vertex pair:

 for k ← 1 to n do

 for i ← 1 to n do

 if dik < > ∞

 then

 for j ← 1 to n do

 if dkj <> ∞

 then

 min

 $≤ dik + dkj

 min

 if $ < dij then

 min

 dij ← $

 (or)

for k ← 1 to n do

 for i ← 1 to n do

 for j ← 1 to n do

 dij ← min {dij, dik + dkj} k = 1

