CHAPTER 2: CONSTANTS, VARIABLES AND DATA TYPES DA RAVEN, At e,
Introduction:

A programming language is designed to help process certain kinds of data

consisting of numbers, characters and strings and to provide useful output known
as information.

Definitions:

Program:

N

The task of processing of data is accomplished by executing a sequence &cise
instructions called a program. Q

&

Grammar (or) Syntax rules: Q

The instructions are formed using certain symbols and w@rds*according to some
rigid rules known as syntax rules or grammar.

CHARACTER SET: Q

’
The character set in C can be classified into ﬂ@llowing types:
. Letters X

. Digits é\

1
2
3. Special characters
4

N\
. White spaces. §®®'
Letters:

RS

Uppercase A......... Z)\'

Lowercase a%

Digits: @

All deci -1 0 T -

Spe(ialichar .
, Comma ! Exclamation mark % Percent sign
.Period | Vertical bar & Ampersand
; semicolon / Slash A Caret

: Colon \ Backslash * asterisk

? Question mark ~ Tilde - minus sign

‘ Apostrophe _Under score + Plus sign

S Dollar sign < Opening angle bracket(or less than sign)

- i VEEN SR,
s Cldsingtangle bracket (or greater than sign)] right bracket DARA

(left parenthesis { left brace) Right parenthesis
} Right brace [left bracket # Number sign
WHITE SPACES:

i)Blank space ii)New Line iii)Horizontal tab iv)Form feed v)Carriage return. Q

TRIGRAPH CHAR.ACTERS: QQ

Trigraph sequences provide a way to enter certain charaé& at are not

available on some keyboards.

*
A trigraph sequence consists of three characters. (two queglon marks followed by

another character) Q\ M

Trigraph sequence Transalation

Ti= . umber sign

\é [Left bracket

2?) - ®®. —]Right bracket
3

{ Left brace

77> ,\Q - } Right brace

2?1 ®® | Vertical bar
??/ % \ Back slash
- O ~ Tilde

C TOKENS:

The smallest individual units of a C program are known as C tokens. C has six types
of tokens as shown below.

Note:

.

A C program is written using these tokens and the syntax of the language.

Every C word is classified as either a keyword or an identifier.

rdas.

OVAPRAVERN s arup,

e All keywords have fixed meaning and these meanings cannot be changed.

e Keywords serve as basic building blocks foe program.

e All keywords must be written in lowercase only

auto double int struct break
else long switch case enum(\
register typedef char extern r

union const float short signed
continue for signed voidQ& default
goto sizeof volatile g if

static while %

\.
ldentifiers: Q
’
gunctions and arrays. These are
ce of letters and digits, with a letter
nd lower case letters are permitted,

although lowercase letters @nonly used. Underscore character is also

Identifiers refer to the name of variab
user — defined names and consist ofa s
as a first character. Both upper c

permitted in identifiers.

-

1. A keyword be used as an identifier.

2. An id@er must not contain white spaces.

Const@ >

C@nts in C refer to fixed values that do not change during the execution of a
program.

Integer Constants:

An integer constant refers to a sequence of digits. There are three types of
integers namely decimal integer, octal integer, and hexadecimal integer.

Decimal integers consist of a set of digits, o through 9, preceded by an
optional — or + sign.

Example: 123 -321 0 +78

De A PRAVEEN, wscummn,

Note; Spaces, Commas and non — digit characters are not permitted between
digits.

An octal integer consists of any character of digit from the set 0 through 7 with a
leading 0.

Example: 037 0 0553

Hexadecimal integer consists of a sequence of digits preceded byOx or OX. Th
may also include.alphabets A through F (or) a through f. The letter A thro@
represent the number 10 to 15. AQ

Q"b’

*
Numbers containing fractional parts are called as realqaqsiants or floating point

constants. Q

P
Example: 0.0083 -0.75 435, 66 +247.0

Example: 0X2 Ox9F 0Xbcd 0X

Real Constants:

The numbers above are represented in’{{mal notation, having a whole number
followed by a decimal point and th@ ional part.

e Itis possible to omit dw&)re (or) after the decimal point.

Example : 215. 69%

e Areal num%@ also be expressed in exponential or Scientific notation.

Examgle@i
The gen@o

rm is mantissa e exponent

may be written as 2.1565e2 (e2 means multiply by 10%).

Thgmantissa is either a real number expressed in decimal notation or an integer.
Example: 0.65e4 65e2

The letter e separating the mantissa and the exponent part can be written in
either lowercase or uppercase.

Single character constants:

A single character constant contains a single chardcter enclosed within a pair of
single quote marks.

Example: ‘5"‘X")’ ‘‘

Ch _
aracter constants have integer values known as ASCIl values . MARNE ke xn,

F

or example, the statement printf(“%d”,’a’) would print the number 97.
Similarly the statement printf(“%c”,"97’) would print the character a
String constants:

A string constant is a sequence of characters enclosed in double quotes. The
characters may be letters, numbers, special characters and blank spaces. @Q

Example: “hello” “1997" “5+3” aal” QQ
Backslash character constants: &(b’

C supports special backslash character constants that areused in output
functions.

Constant Mea n@&

\a’ Qgi{)le alert(bell)
; N

\b \\%ack space

' .
\n new line

<
\
\r ﬁgfb' carriage return
\t
RS

A\

N
% $®6 single quote
O

>

horizontal tab

vertical tab

g i double quote

Var@yas:

A variable is a data name that may be used to store a data value. 4 variable may
take different values at different times during execution.

Variable names may consist of letters, digits and the underscore character subject
to the following conditions

1. They must begin with a letter.

2. The length of a variable name should not be more than eight characters.

3, Uppercase and lowercase letters are significant.

De A PRAVEEN. s umt il

4 1t should not be a character.

5 White space is not allowed.
Examples: John ph_value suml
Invalid examples: 123 (area)%
Declaration ot variables:

After designing suitable variable names, they must be declared to the comp%
Declaration does two things: @

1. It tells the compiler what the variable name is. &Q}
2. It specifies what type of data the variable will hold. Q
Declaration of variables must be done before thged in the program.
The syntax for declaring a variable is as follo% %
data-type v1,v2,...vn;. ‘\(bv

v1,v2,....vn are the names of varia\'lg). Variables are separated by commas. A
declaration statement must &h a semicolon.

Example: &

int amount; ,\’0

double ratio; 6
float su$®
cbn@

Assigning values to variables:

The variables that are used in expressions (on the right side q equal (=) sign of a
computational statement) must be assigned values before they are encountered

in the program. Values can be assigned to variables using the assignment
operator = as follows:

The general format is

Variable — name = Constant;

amples: initial - value = 0; DrAFRAVEEN. A,

Balance = 75.84;
Yes =X’ ;
‘c’ permits multiple assignments in one line.

Example: initial - value = 0; final — value = 100

An assignment statement implies that the value at the variable on the left o@@

‘equal sign’ is set equal to the value of the quantity (or the expression o @
right.

&
Example: year = year + 1; Q

means that the ‘new value’ of year is equal to the ‘old valu%‘year plus:

During assignment operation, C converts the type a e’on the R.H.S to the

type on the left. This may involve truncation when r&af value is converted to an
: ’
integer.

It is possible to assign a value to a var{@'at the time the variable is
declared. This take the following @

data-type variable-name = @@ﬁt;
Examples: &

int a =100; \'0

float balance ={5.84¢

The proc iving initial value to variables is called initialization.

Q rmits the initialization of more than one variables in one statement
sing multiple assignment operators.

Example:
p:q:r:s:O;
Reading Data from keyboard:

Values can be given to variables by inputting the data through keyboard using the
scanf function. The general format of scanf is

Dr A PRAVEEN. usc mi .
Scanf(“control string”,&variablel,&variable2,....);
The control string contains the format of data being received. The ampersand

symbol & before each variable name is an operator that specifies the address of
the variable name.

When the scanf function is encountered by the computer, the execution stops
and waits for the value of the variable to be typed in. After the value is typed in
and the Return key is pressed, the computer then proceeds to te next stat

Defining symbolic constants: AQ)

Certain unique constants are often used in a program. These ¢ Q{q S may
appear repeatedly in a number of places in the program. We fa
the subsequent use of such programs.

two problems in

1. Problem in modification of the program. Q\ e

s

%ne frees us from these problems.
at the beginning of the program. A

2. Problem in understanding the program

Assignment of such constantstoa s mbol'
-Constant vales are assigned to these n
constant is defined as follows: @

#define symbolic-name val@&nstant

¢ Symbolic names a&ﬂio called as constant identifiers.

e Symbolic nar@e constants (not variables). Hence they do not appear in
declaratlo

The follo§ les apply to a #define statement, which defines a symbolic
state

Oymbollc names have the same form as variable names. Symbolic names

are written in uppercase letters to distinguish them from the normal
variable names.

2. No blank space between the pound sing # and the word define is permitted

3. # must be the first character in the line.

4. Ablank space is required between # define and symbolic name and
between the symbolic name and the constant.

5. # define statements must not end with a semicolon.

DrAPRAVEEN. hsc umima,
6. After definition, the symbolic name should not be assigned any other value

within the program by using an assignment statement.

7. Symbolic names are not declared for data types. Its data type depends on
the type of constant.

8. # define statements may appear anywhere in the program but befo@ is
references in the program. Usually it is placed in the beginning of@

program. AQ
MANAGING INPUT AND OUTPUT OPERATION \(b'
getchar function

*

Reading a single character can be done by using the Eunction getchar(). The
general form of the getchar function is as fo ,

Variable-name=getchar(); ’
Variable-name is a valid C name of ¢ \data type.
&

When this statement is encou @d, the computer waits until a key is _
pressed and then assign%i@naracter as a value to getchar function.

The getchar function %f d on the right-hand side of an assignment

statement. The cf{S value of getchar is assigned to the variable name
on the left. N\

Character@st Eunctions:
Fun Test

Is ¢ an alphanumeric character ?
Is ¢ an alphabetic character?

isdigit(c) Is ¢ a digit? ¢
islower(c) Is c a lowercase letter?
isupper(c) Is c an uppercase letter?
isspace(c) Is c a white space character?

ispunct(c) Is ¢ a punctuation mark?

De A PRAVEEN, ksc s,
Putchar function '

General form: putchar(variable-name);

Where variable-name is a type char variable containing a character. This
statement displays the character contained in the variable-name of the
terminal.

Scanf function: @Q

The general form of the scanf function is &
scanf(“control sring’,argl,arg2,.......,argn); Q
The control string specifies the field format in which the data to be entered

and the arguments argl,arg2,........argn specif@& address of the locations
where the data is stored. .

V4
Control string and arguments are sqp}g'(% by commas.

Printf function: &

i P
The general form of the p@\ nction is
Printf(“control string@l,argz,.....argn);

The control stringlifdicates how many arguments follow and what their
types are. Theg argments argl,arg2,.....argn are the variables whose values

are form and printed according to the specifications of the control

strinO

ThCa’rgum_ents should match in number, order and type with the format
specifications.

