
ReTeLL (June 2018), Vol. 19

Genetic Algorithm for Optimal Travel Plan Preparation

………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor & Head

Department of Computer Science

Loyola College, Chennai

&

M. Arun Rajesh
Data Analyst, Shalom InfoTech,

Bharathidasan University Technology Park

Tiruchirappalli

Abstract

Stochastic Optimization Algorithms, such as the Genetic Algorithm, are often

used by the Business Organizations to obtain the best solutions for their business

problems. In this paper, a Genetic Algorithm is used to determine an optimal

travel plan for an entire Music Troupe.

Keywords: Stochastic Optimization Techniques, Genetic Algorithm

Introduction

The collaborative filtering techniques are now often used in the field of data

science.1 The business problems that are related to the big data analytics are at

present tackled with the help of the Hadoop Ecosystem.2 The Data Analysts now

use the KNN algorithm for the formulation of Price Predictors.3 Hierarchical

Clustering algorithms are at present used for getting valuable business insights

into the customer preferences.4 In this paper, a Genetic Algorithm, which tries to

intelligently modify the solutions in a way that is likely to improve them, is used

to determine an optimal travel plan for an entire Music Troupe.

Data Ingestion

In this paper, an optimal travel plan is determined for the members of a Music

Troupe, who are coming from all over the country by flight to Mumbai, where

they wish to conduct a grand Music Concert. They will all arrive on the same day

and leave on the same day, and they would like to share transportation to and

from the airport. There are dozens of flights per day to Mumbai from any of the

Music Troupe's members’ locations, all leaving at different times. The flights also

vary in fare and in duration.

Planning a trip for a group of people from different locations all arriving at the

same place is always a challenge, and it often requires an optimal solution. A lot

of different inputs are to be ingested by the Optimization Algorithm in order to

arrive at an optimal solution. Some vital inputs are required, such as what every

one’s flight schedule should be, how many cars should be rented, and which

ReTeLL (June 2018), Vol. 19

airport is easiest. Many outputs should also be considered, such as the total cost,

time spent waiting at airports, and time taken off work. Because the inputs cannot

be mapped to the outputs with a simple formula, the need for obtaining an optimal

solution arises in this case.

To begin, a new Python program file called tripOptimization.py is to be created

and the following code is to be inserted into it:

import time

import random

import math

troupe = [(‘IlaiyaRaja’, ‘MAA’), (‘Yesudas’, ‘TRV’),
 (‘SubhaMudgal’, ‘BLR’), (‘SonuNigam’, ‘HYD’),
 (‘AnuShankar’, ‘DEL’), (‘ShreyaGhosal’, ‘CCU’)]

destination = ‘BOM’

The sample data for this study are stored as trip.txt and this data file contains

origin, destination, departure time, arrival time, and fare for a set of flights in a

comma-separated format:

DEL, MAA, 20:27, 23:42, 1690

MAA, DEL, 19:53, 22:21, 1730

DEL, BOM, 6:39, 8:09, 860

BOM, DEL, 6:17, 8:26, 890

DEL, BLR, 8:23, 10:28, 1490

BLR, DEL, 7:04, 9:11, 1280

These data are loaded into a dictionary with the origin and destination as the keys

and a list of potential flight details as the values. The following code to ingest the

data is to be added to tripOptimization.py:

flights = { }

for line in file (‘trip.txt.’):

 origin, destination, departure, arrival, fare = line.strip().split(‘,’)

 flights.setdefault ((origin,destination), [])

 #Details are added to the list of possible flights

 flights [(origin, destination)].append ((departure, arrival, int (fare)))

The utility function getTimeInMinutes() is also defined, which calculates how

many minutes into the day a given time is. This makes it easy to calculate flight

times and waiting times. This function is added to tripOptimization.py:

def getTimeInMinutes(t):

x = time.strptime(t, ‘%H : %M’)

return x[3] * 60 + x[4]

ReTeLL (June 2018), Vol. 19

The challenge now is to decide which flight each person in the Music Troupe

should take. Even though keeping the total fare down is a goal, there are many

other possible factors that the optimal solution will take into account and try to

minimize, such as the total waiting time at the airport or total flight time. These

factors will have to be taken in to account through an appropriate Cost Function.

When approaching an optimization problem like this one, it is necessary to

determine how a potential solution will be represented. A simple representation

that is possible in this study is a list of flight numbers. In this case, each number

can represent which flight a troupe member chooses to take, where 0 is the first

flight of the day, 1 is the second, and so on. Since each Music Troupe member

needs an outbound flight and a return flight, the length of this list is twice the

number of troupe members. For example, the list

[3. 5, 4, 2, 3, 6, 3, 7, 2, 3, 4, 1]

represents a solution in which Ilaiya Raja takes the fouth flight of the day from

Chennai to Mumbai, and the sixth flight back to Chennai on the day he returns.

Yesudas takes the fifth flight from Trivandrum to Mumbai, and the third flight

back.

Cost Function Construction

The cost function is the key to solve any optimization problem. The goal of our

optimization algorithm is to find a set of flights that minimizes the cost function.

The cost function in our Group Travel Optimization problem will involve the

following variables:

Fare : The total fare of all the plane tickets.

Travel Time : The total time that everyone has to spend on a plane.

Waiting Time : Time spent at the airport waiting for the other members of

the troupe to arrive.

Departure Time : Flights that leave too early in the morning may impose an

additional cost by requiring travelers to miss out on sleep.

Car Rental Period : If the troupe rents a car, they should return it earlier in the

day than when they rented it or be forced to pay for a whole

extra day.

We have to now determine how much money that time on the plane or time

waiting in the airport is worth. The following tripScheduleCost() function takes

into account the total cost of the trip and the total time spent waiting at airports

for the various members of the troupe. It also adds a penalty of Rs.250 if the car

is returned at a later time of the day than when it was rented. The following

tripScheduleCost() function is to be added to tripOptimization.py:

ReTeLL (June 2018), Vol. 19

def tripScheduleCost (soln):

 totalfare = 0

 latestarrival = 0

 earleistdeparture = 24 * 60

 for d in range (len(soln)/2):

 # Get the inbound and outbound flights

 origin = troupe [d][1]

 outbound = flights [(origin, destination)][int(soln[d])]

 returnf = flights [(destination, origin)] [int(soln[d+1])]

 # Total fare is the fare of all outbound and return flights

 totalfare += outbound[2]

 totalfare += returnf[2]

 # Track the latest arrival and earliest departure

 if latestarrival < getTimeInMinutes (outbound [1]):

 latestarrival = getTimeInMinutes (outbound[1])

 if earliestdeparture> geTimeInMinutes (returnf[0]):

 earliestdeparture = getTimeInMinutes (return[0])

 # Every person should wait at the airport until the latest person
 arrives.

 # They also should arrive at the same time and wait for their
 flights.

 totalWaitingTime = 0

 for d in range (len(soln)/2):

 origin = troupe [d][1]

 outbound = flights[(origin, destination)] [int(soln[d])]

 returnf = flights[(destination, origin)] [int(soln[d+1])]

 totalWaitingTime += latestarrival – getTimeInMinutes
 (outbound[1])

 totalwaitingTime += getTimeInMinutes (returnf[0] – earliest
 departure

 # Check whether this solution requires an extra day of car
 rental

 # That will be Rs. 250!

 if latestarrival > earliestdeparture: totalfare += 250

 return totalfare + totalwaitingTime

Here, the total waiting time is calculated based on the assumption that all the

Music Troupe members will leave the airport together when the last person

arrives, and will all go to the airport for the earliest departure. This

tripScheduleCost() function shall now be tried in the following Python session:

ReTeLL (June 2018), Vol. 19

 >>> reload (tripOptimization)
 >>> tripOptimization.tripScheduleCost(s)
 52830

Optimal Travel Plan Determination

The goal of our optimal travel plan determination problem is to minimize the cost

by choosing the correct set of flight numbers. Genetic Algorithms work by

initially creating a set of random solutions known as the population. At each step

of the optimization, the cost function for the entire population is calculated to get

a ranked list of solutions. After the solutions are ranked, a new population -

known as the next generation - is created. First, the top solutions in the current

population are added to the new population as they are. This process is called

elitism. The rest of the new population consists of completely new solutions that

are created by modifying the best solutions.

There are two ways in which the solutions can be modified. The simpler of these

is called mutation, which is usually a small, simple, random change to an existing

solution. In our study, a mutation can be done simply by picking one of the

numbers in the solution and increasing or decreasing it.

The other way to modify solutions is called crossover or breeding. This method

involves taking two of the best solutions and combining them in some way. In

this study, a simple way to do crossover is to take a random number of elements

from one solution and the rest of the elements from another solution. A new

population, usually the same size as the old one, is created by randomly mutating

and heading the best solutions. Then the process repeats - the new population is

ranked and another population is created. This continues either for a fixed number

of iterations or until there has been no improvement over several generations. The

geneticOptimization() function shall now be added to tripOptimization.py:

def geneticOptimization (domain, costf, populationSize = 50, step = 1,
 mutationProbability = 0.2, elite = 0.2

 maximumIterations = 100):
 # Mutation Operation is performed

 def doMutation (vec) :

 i = random.randint (0, len (domain) – 1)

 if random.random () < 0.5 and vec[i] > domain[i][0] :

 return vec[0:i] + [vec[i] – step] + vec[i+1:]

 elif vec[i] < domain[i][1] :

 return vec[0:i] + [vec[i] + step] + vec[i+1:]

 # Crossover Operation is performed

 def doCrossover(r1, r2):

 i = random.randint(1, len(domain) –2)

 return r1[0:i] + r2[i:]

ReTeLL (June 2018), Vol. 19

The initial population is built

 population = []

 for i in range (populationSize):

 vec = [random.randint(domain[i][0], domain[i][1])

 for i in range (len(domain))]

 population.append(vec)

 # To find the number of winners from each generation

 topelite = int (elite * populationSize)

 # Main loop starts here

 for i in range (maximumIterations):

 scores = [(costf (v), v) for v in population]

 scores.sort ()

 ranked = [v for (s,v) in scores]

 # Starting with the pure winners

 population = ranked [0 : topelite]

 # Adding mutated and breed forms of the winners

 while len(population) < populationSize:

 if random.random() < mutationProbability:

 # Mutation is done

 c=random.randint (0, topelite)

 population.append(doMutation(ranked[c]))

 else:

 # Crossover is done

 C1 = random.randint (0, topelite)

 C2 = random.randint (0, topelite)

 population.append (doCrossover(ranked[c1], ranked[c2]))

 # Displaying current best score

 print scores[0][0]

 return scores[0][1]

In order to display all the flights that the Music Troupe members need to take in

order to ensure the above mentioned optimum cost, the following

displayOptimalSchedule() function is to be added to tripOptimization.py:

 def dispalyOptimalSchedule(r) :

 for d in range (len(r)/2):

 name = troupe [d] [0]

 origin = troupe [d] [1]

 out = flights [(origin, destination)] [r[d]]

 ret = flights [(destination, origin)] [r[d+1]]

ReTeLL (June 2018), Vol. 19

 print ‘%10s %10s %5s – %5s $%3s %5s %5s $%3s’

 % (name, origin, out[0], out[1], out[2], ret[0], ret[1],
 ret[2]) ’

The geneticOptimization() function shall now be executed in order to optimize

the group travel plan of the Music Troupe by using the Genetic Algorithm.

>>> reload (tripOptimization)

>>> s = tripOptimization.geneticOptimization (domain,

 tripOptimization.tripScheduleCost)

>>> tripOptimization.tripScheduleCost(s)

 22870

The optimal group travel plan for the entire Music Troupe obtained by using

the Genetic Algorithm shall now be displayed by executing the

displayOptimalSchedule() function in a Python session:

>>> tripOptimization.dispalyOptimalSchedule(s)

 Ilaiya Raja Chennai 11:44-14:12 Rs 1090 10:53-12:23 Rs 7300

 Yesudas Trivandrum 11:32-15:59 Rs 2900 11:54-15:19 Rs 2660

 Shubha Mudgal Bengaluru 10:57-13:40 Rs 1890 10:42-13:26 Rs 1290

 Sonu Nigam Hyderabad 10:29-13:41 Rs 2480 11:47-14:15 Rs 1800

 Anu Shankar Delhi 10:54-12:27 Rs 1340 10:53-13:31 Rs 1220

 Shereya Ghosal Kolkata 11:28-13:27 Rs 1750 14:17-16:31 Rs 1390

References

 1. Jacques Bughin, “Big Data, Big Bang?”, Journal of Big Data, 2016,Vol.3,

Iss. 2, pp. 1-14.

 2. Muthu, C. and Prakash, M.C., “Impact of Hadoop Ecosystem on Big Data

Analytics”, International Journal of Exclusive Management Research,

Special Issue, 2015, Vol. 1, Iss. 1, pp. 88-90.

 3. Muthu, C. and Prakash, M.C.,“Building a Price Predictor for an Auctioning

Website”, ReTeLL, 2015, Vol. 15, Iss. 1, pp. 135-137.

 4. Muthu, C. and Prakash, M.C., “Hierarchical Clustering of Users’

Preferences”, ReTeLL, 2016, Vol. 16, Iss. 1, pp. 135-136.

 5. Muthu, C. and Prakash, M.C., “Matching the users of a Website using SVM

Technique”, ReTeLL, 2017, Vol. 17, Iss. 1, pp. 53-56.

 6. Muthu, C. and Prakash, M.C., “Using Bayesian Classifier for Email

Sorting”, ReTeLL, 2017, Vol. 17, Iss. 1, pp. 57-60.

	RETELL_2018_15.pdf
	RETELL_2018_16.pdf
	RETELL_2018_17.pdf
	RETELL_2018_18.pdf
	RETELL_2018_19.pdf
	RETELL_2018_20.pdf
	RETELL_2018_21.pdf

